Skip to main content

Nomenclature & Symbol Table

This table defines the standard notation used throughout the Quantum Braid Dynamics (QBD) monograph.

SymbolDescriptionFirst Used
A,BA, BGeneric propositions within a logical schema§1.1.2
\vdashSyntactic derivability (provability within a formal system)§1.1.2
\modelsSemantic entailment (truth within a model)§1.1.2
Γ\GammaA set of premises or axioms§1.1.2
θ\thetaA derived theorem or conclusion§1.1.2
SnS_nThe nn-th statement in a formal proof sequence§1.1.2
FFA consistent, effectively axiomatized formal system§1.1.3
G\mathcal{G}The Gödel sentence ("This statement is unprovable in F")§1.1.3
Con(F)Con(F)The statement asserting the consistency of system FF§1.1.3
tphyst_{phys}Physical Time (emergent, geometric, continuous, local)§1.2.1
tLt_LGlobal Logical Time (fundamental, discrete, integer-valued)§1.2.1
N0\mathbb{N}_0The set of non-negative integers {0,1,2,}\{0, 1, 2, \dots\}§1.2.2
UtLU_{t_L}The global state of the universe at logical time step tLt_L§1.2.2
U\mathcal{U}The Universal Evolution Operator§1.2.2
H^\hat{H}Total Hamiltonian operator§1.2.2
Ψ\PsiThe wavefunction of the universe§1.2.2
nnGeneration step (Cellular Automaton context)§1.2.2.1
μ\muRenormalization scale (or mean in statistical contexts)§1.2.2.1
τ\tauFictitious or imaginary time parameter§1.2.2.1
T\mathcal{T}Unimodular Time variable§1.2.2.3
P^\hat{P}Permutation operator (Cellular Automaton Interpretation)§1.2.2.2
ψ(t)\vert \psi(t)\rangleThe Ontic State vector§1.2.2.2
Λ,Λ^\Lambda, \hat{\Lambda}Cosmological constant (and corresponding operator)§1.2.2.3
\hbarReduced Planck constant§1.2.2.3
S(UtL)S(U_{t_L})Entropy of the state UtLU_{t_L}§1.2.3
O()O(\cdot)Big O notation (asymptotic upper bound)§1.2.3
P\ell_PPlanck length (1.6×1035\approx 1.6 \times 10^{-35} m)§1.2.3
NPN_PNumber of Planck voxels§1.2.3
Ωn\vert \Omega_n \vertCardinality of the state space at step nn§1.2.3
kBk_BBoltzmann constant§1.2.3
EEEnergy§1.2.3
TTTemperature§1.2.3
dtLd_{t_L}Dimension of the Hilbert space at step tLt_L§1.2.3
R\mathcal{R}Rule set for evolution§1.2.3
stLs_{t_L}Number of active rewrite sites at step tLt_L§1.2.3
bbBranching factor (outcomes per site)§1.2.3
δ,γ\delta, \gammaScaling constants for site growth§1.2.3
σ2\sigma^2Variance§1.2.4.1
E[]\mathbb{E}[\cdot]Expected value operator§1.2.4.1
P()\mathbb{P}(\cdot)Probability measure§1.2.4.1
Z<0\mathbb{Z}_{<0}The set of negative integers§1.2.7.1
\precStrict precedence relation (causal ordering)§1.2.5.1
ccSpeed of light in vacuum§1.2.6.1
GμνG_{\mu\nu}Einstein tensor§1.2.6.2
TμνT_{\mu\nu}Stress-energy tensor§1.2.6.2
GGGravitational constant§1.2.6.2
RsR_sSchwarzschild radius§1.2.6.2
RnR_nThe nn-th Grim Reaper in the paradox sequence§1.2.7.2
Ω\OmegaUniversal State Space (set of all admissible graphs)§1.3.1
GGA specific Causal Graph configuration§1.3.1
VVThe set of Vertices (Abstract Events)§1.3.1
EEThe set of Edges (Causal Relations)§1.3.1
HHThe History Function (Timestamp map)§1.3.1
vi,u,wv_i, u, wIndividual vertices (events)§1.3.1
eeAn individual directed edge§1.3.1
N\mathbb{N}Natural numbers (codomain of HH)§1.3.1
T\mathfrak{T}Elementary Task Space (set of kinematic transformations)§1.4.1.1
Tadd\mathfrak{T}_{add}Edge Creation Task§1.4.1
Tdel\mathfrak{T}_{del}Edge Deletion Task§1.4.1
ΔF\Delta FChange in Free Energy§1.4.4
VA,VBV_A, V_BDisjoint vertex sets in a bipartite graph§1.5.1
\toDirectionality indicator in a path (e.g., vwv \to w)§1.5.2
vivjv_i \to v_jDirected causal link§2.1.1
\nrightarrowNegation of directed link§2.1.1
R\mathcal{R}Rewrite Rule§2.2.1
SSEntropy§2.2.3
\leEffective Influence Relation§2.2.3
γ\gammaGeometric Quantum (Directed 3-cycle)§2.3.2
Π(u,v)\Pi(u,v)Set of directed paths from u to v§2.3.3.1
Φ(G)\Phi(G)Lexicographic Potential§2.3.4
LLLength of longest simple cycle§2.3.4
NLN_LNumber of cycles of length L§2.3.4
k\langle k \rangleMean cycle length§2.7.3
RRRadius of local computational patch§2.7.3
ρ\rhoGraph density§2.7.3
ξ\xiCorrelation length§2.7.4
G0G_0Initial state (tL=0t_L=0)§3.1.1
V0,E0,H0V_0, E_0, H_0Initial vertex, edge, and history sets§3.1.1
ddepth(v)d_{depth}(v)Vertex depth from root§3.1.5
\Aut(G)\Aut(G)Automorphism group of graph G§3.1.6
Veven,VoddV_{even}, V_{odd}Depth parity partition sets§3.1.8
kdegk_{deg}Internal coordination number (Bethe fragment)§3.2.1
O(G;λ)\mathcal{O}(G; \lambda)Structural Optimality Score§3.2.9
HS(G)H_S(G)Shannon entropy of orbit size distribution§3.2.9
Ssites(G)\mathcal{S}_{sites}(G)Set of compliant rewrite sites§3.3.2
φ\varphiAutomorphism mapping§3.3.2
etunnele_{tunnel}Symmetry-breaking tunneling edge§3.4.2
Pign\mathbb{P}_{ign}Ignition probability§3.4.5
χ(σe)\chi(\vec{\sigma}_e)Syndrome-response function§3.4.5
H\mathcal{H}Hilbert configuration space (C2)K(\mathbb{C}^2)^{\otimes K}§3.5.2
C\mathcal{C}Valid codespace§3.5.1.1
Zuv,XuvZ_{uv}, X_{uv}Pauli operators on edge qubit§3.5.2
Πcycle\Pi_{cycle}2-Cycle Constraint Projector§3.5.3
Πlocal\Pi_{local}Locality Constraint Projector§3.5.3
KuvK_{uv}Triplet Check Operator§3.5.4